Aerobraking – A mission enabling and fuel saving technique for orbit changes -Venus Express and ExoMars TGO

> Håkan Svedhem ESA/ESTEC

Earth – Venus Trajectory

Trajectory projection onto Ecliptic

Reducing Apocentre altitude

Venus Express

Specific points to be considered for the test case of Venuis Express

- 1. Venus Express has a body/solar array layout that results in a dynamically stable attitude.
- 2. A software mode to operate the spacecraft is during aerobraking is a part of the on board software. Aerobraking was initially foreseen as a backup in case the Venus orbit insertion would fail, however it was never intended to be used as a part of the nominal mission. Only limited testing of this has been performed.
- 3. Additional high temperature tests have been done on the solar panels, but unidentified hotspots may exist.
- The most limiting factor on Venus Express is likely to be the aerothermal heat input on the Multi Layer Insulation on the -Z platform.
- 5. The uncertainty and variable character of the Atmosphere needs to be considered.

$m a = \frac{1}{2} \rho C_d A v^2$

Parameters to consider

Pericentre velocity vs Orbital Period

Aerothermal flux limitations

---- Thermal constraint due to the solar array

---- Thermal constraint due to the MLI

Note (1) : Depending on the plateau the sun will be illuminating the back side of the SA either at the beginning or at the end of the plateau

Optimum conditions for aerobraking at Venus

ESA UNCLASSIFIED - For O View from above Venus orbit plane

Pericentre Altitude [km]

Pericentre Altitude [km]

Preparation for aerobraking: Torque technique for measuring atmospheric density at low altitudes

High day to Day variablity from Drag/Torque measurements at 165km

Models and measurements of density and temperature

- VIRA (Venus International Reference Model), Hedin model, VTS3 model
- Measurements on Venus Express
 - Spicav, up to 130 km (only CO₂)
 - SOIR, up to 150 km (only CO_2)
 - VeRa, up to 95 km
 - Drag, by radio tracking, 165-180 km
 - Torque, 165-200 km

Polar density, raw torque data

Polar density, normalised to 90 deg SZA

Pericentre Altitude evolution

Delta-v vs date

Aerobraking pass #2986, 23 June

Delta-V [m/s]

Atmospheric Density

Measurements vs. Model results

Polar density, raw torque data

Evolution of Orbital Period

Conclusion on VEX Test

- Efficiency of aerobraking demonstrated: 1 hour 20 min reduction in orbital period in 4 weeks.
- Spacecraft capability and robustness confirmed, even at a maximum dynamic pressure of 0.7N/m² and a heat input of near 7 kW/m². No damage or reduced performance was observed.
- Operational procedures confirmed.
- Unique scientific results, providing atmospheric densities in an unchartered region. Actual densities turned out less than half of what was predicted by previous models.

ExoMars and the Trace Gas Orbiter

■ The TGO is the first part of the ExoMars mission, to be followed by the ExoMars Rover and Surface platform to be launched in July 2020

- ExoMars is an ESA Roscosmos joint programme
- ExoMars is funded within the European Exploration Envelop Programme (E3P) and is a part of the ESA HRE directorate with support from SCI

The TGO is a very large spacecraft, with a total mass of 3700kg. The launch mass was 4300kg (including the Schiaparelli, the Entry Descent and Landing Demonstration Model). The height of TGO is about 3.2 m and the Solar array tip-to-tip length is 17.5m

ESA UNCLASSIFIED - For Official Use

· = ■ ▶ = = + ■ + ■ = ≝ = ■ ■ ■ = = = M ■ ■ ■ ■ = = ** • •

Application of aerobraking to ExoMars Trace Gas Orbiter

.

Aerobraking animation

ESA UNCLASSIFIED - For Official Use

Aerobraking altitude evolution

ESA UNCLASSIFIED - For Official Use

Delta-v per pass

ESA UNCLASSIFIED - For Official Use

Two typical TGO a/b passes

ESA UNCLASSIFIED - For Official Use

European Space Agency

*

🖊 🖉 esa

.

Evolution of orbital period for planned vs actual aerobraking

European Space Agency

ŧ

₩

+

TGO Spacecraft and instrument commissioning will start in April 2018

Science and data relay will start in June 2018