Geoplanet Workshop on planetary missions

Overview of the Science Programme

Luigi Colangeli Head – Science Coordination Office Directorate of Science

ESA UNCLASSIFIED - For Official Use

Contents

Introduction

The Science Programme

Present plans

Future missions

➢ "New ideas"

ESA UNCLASSIFIED - For Official Use ESA | 9/1/2018 | Slide 2

space science

human spaceflight

exploration

earth observation

launchers

navigation

ESA UNCLASSIFIED - For Official Use

telecommunications

× + |

The Science Programme

Science-driven

both long-term science planning and mission calls are bottom-up processes, relying on broad community input and peer review.

<u>Mandatorv</u>

all member states contribute pro-rata to GNP providing budget stability, allowing long-term planning of its scientific goals and being the backbone of the Agency.

ESA UNCLASSIFIED - For Official Use

ESA | 9/1/2018 | Slide 6

European Space Agency

www.esa.int

ESA UNCLASSIFIED - For Official Use

ESA | 9/1/2018 | Slide 11

_ II 🛌 :: 🖛 🕂 II 🗯 🔚 2 II II = _ _ # 🖬 🖬 II _ :: II II 💥 🖕 🕪

Jupiter's

10

Mars

6,796 Km

Saturn's

Titan

Mercury 4,878 Km

3,476 Km 3,630 Km

Earth's

Moon

Jupiter's

Europa

3138 Km

Jupiter's

Ganymede

5,262 Km

12,756 Km

Jupiter's Callisto

4,800 Km

5,150 Km

Co-Pis: G. Branduardi-Raymont and C. Wang

Smile will investigate the interaction between Earth's protective shield – the magnetosphere – and the supersonic solar wind

Goal: understanding the physical processes taking place during the continuous interaction between the solar wind and the magnetosphere

Aurora: NASA Polar

+ i E

NASA flagship mission

partnership between NASA, ESA and the Canadian Space Agency

•

General purpose near and mid-infrared observatory

- Largest astronomical telescope ever flown
- Observing objects ranging from planets and bodies of our Solar System to some of the most distant galaxies

ESA UNCLASSIFIED - For Official Use

jwst JWST hardware status - OTIS

Making sure the telescope and the instruments can survive the harsh conditions of a rocket launch: acoustic and vibration testing.

= II 🛌 == += II == 🚝 == II II = = = = 🖼 🛶 🔯 II == == H 💥 🚔 🕪

ESA | 9/1/2018 | Slide 18

A bottom-up approach

The elements

The building blocks of the programme include:

- **a.** L-missions, large European led flagship missions with a cost to ESA of around 2 annual budgets, one every 7-8 years.
 - •High innovation content
 - •European flagships

XMM-Newton

*

ESA | 9/1/2018 | Slide 20

The elements

The building blocks of the programme include:

- **a.** L-missions, large European led flagship missions with a cost to ESA of around 2 annual budgets, one every 7-8 years.
- **b. M-missions**, provide the programme with flexibility. ESA led or implemented through international collaboration. Cost to ESA of around one annual budget, one every 3-4 years.

•Makes use of current cutting-edge technology

•Programme workhorse

ESA UNCLASSIFIED - For Official Use

*

```
ESA | 9/1/2018 | Slide 21
```

= || |= :: = + || = := = 1| || || = = :: = || || || = :: := !!

The elements

The building blocks of the programme include:

- **a.** L-missions, large European led flagship missions with a cost to ESA of around 2 annual budgets, one every 7-8 years.
- **b. M-missions**, provide the programme with flexibility. ESA led or implemented through international collaboration. Cost to ESA of around one annual budget, one every 3-4 years.
- **c. S-missions**, new concept allowing national agencies to play a leading role in missions, 0.1 annual budgets, one every 4 years, potentially.
- **d. O-missions**, which are "missions of opportunity", led by other agencies, small contributions.

ESA Council

ESA UNCLASSIFIED - For Official Use	ESA 9/1/2018 Slide 23
	European Space Agency

M4 selection

Mission – selection process

time

- (*) Advisory Working Groups (exclusion of strongly conflicted members) + additional experts
- (**) SSAC members (exclusion of strongly conflicted members) + experts
- (^) Including financial envelope, TRL of mission elements and readiness of Funding Agencies to fund mission elements proposed not to be under ESA's responsibility
- (^^) Including demonstrated capability to obtain the scientific objectives declared at the time of candidate selection

ESA UNCLASSIFIED - For Official Use ESA | 9/1/2018 | Slide 26

New Science Ideas in ESA's Science Programme

- 26 proposals received by the deadline (14 September 2016)
- No a priori technical screening.
- Scientific assessment under the responsibility of the Advisory Structure, in two stages.
 - No prioritization, only identification of potentially interesting themes
- Post facto technical assessment
- > Work on going on the three selected "themes"
- Results will be made public for the whole community

Selected themes (2/3) – Planetary science vs. platform size

- Strong interest in "focused" planetary missions based on small platforms
- Could enable significant additional opportunities for planetary science on rocky planets, small bodies
- Ideally suited for potential partnerships
- Workshop on "Planetary science missions vs. platform size" held on 6-7 September
- Interaction with the community => CDF study completed in December 2017

ESA UNCLASSIFIED - For Official Use

ESA | 9/1/2018 | Slide 30

__ II ≥ II = + II = ≝ __ II II __ Z __ II = 0 II __ II __ II ≥ ...

_ II ≥ II = + II = ≝ _ II II = = H = 0 II = II ≥ II ≥ II ≥ II